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Oscillator Phase Noise: A Tutorial
Thomas H. Lee, Member, IEEE,and Ali Hajimiri, Member, IEEE

Abstract—Linear time-invariant (LTI) phase noise theories
provide important qualitative design insights but are limited in
their quantitative predictive power. Part of the difficulty is that
device noise undergoes multiple frequency translations to become
oscillator phase noise. A quantitative understanding of this process
requires abandoning the principle of time invariance assumed in
most older theories of phase noise. Fortunately, the noise-to-phase
transfer function of oscillators is still linear, despite the existence
of the nonlinearities necessary for amplitude stabilization. In addi-
tion to providing a quantitative reconciliation between theory and
measurement, the time-varying phase-noise model presented in
this tutorial identifies the importance of symmetry in suppressing
the upconversion of 1 noise into close-in phase noise, and
provides an explicit appreciation of cyclostationary effects and
AM–PM conversion. These insights allow a reinterpretation of
why the Colpitts oscillator exhibits good performance, and suggest
new oscillator topologies. TunedLC and ring oscillator circuit
examples are presented to reinforce the theoretical considerations
developed. Simulation issues and the accommodation of amplitude
noise are considered in appendixes.

Index Terms—Jitter, low-noise oscillators, noise, noise measure-
ment, noise simulation, oscillators, oscillator noise, oscillator sta-
bility, phase jitter, phase-locked loops, phase noise, phase-noise
simulation, voltage-controlled oscillators.

I. INTRODUCTION

I N GENERAL, circuit and device noise can perturb both the
amplitude and phase of an oscillator’s output. Of necessity,

however, all practical oscillators inherently possess an ampli-
tude-limiting mechanism of some kind. Because amplitude fluc-
tuations are usually greatly attenuated as a result, phase noise
generally dominates. Thus, even though it is possible to design
oscillators in which amplitude noise is significant (particularly
at frequencies well removed from that of the carrier), we will
focus primarily on phase noise in the body of this tutorial. The
issue of amplitude noise is considered in detail in the Appendix,
as are practical issues related to how one performs simulations
of phase noise.

We begin by identifying some very general tradeoffs among
key parameters, such as power dissipation, oscillation fre-
quency, resonator , and circuit noise power. These tradeoffs
are first studied qualitatively in a hypothetical ideal oscillator
in which linearity of the noise-to-phase transfer function is
assumed, allowing characterization by the impulse response.
Although linearity is defensible, time invariance fails to
hold even in this simple case. That is, oscillators are linear
time-varying (LTV) systems. By studying the impulse response,
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Fig. 1. “Perfectly efficient”RLCoscillator.

we discover that periodic time variation leads to frequency
translation of device noise to produce the phase-noise spectra
exhibited by real oscillators. In particular, the upconversion
of 1 noise into close-in phase noise is seen to depend on
symmetry properties that are potentially controllable by the
designer. Additionally, the same treatment easily subsumes
the cyclostationarity of noise generators, and helps explain
why class-C operation of active elements within an oscillator
may be beneficial. Illustrative circuit examples reinforce key
insights of the LTV model.

II. GENERAL CONSIDERATIONS

Perhaps the simplest abstraction of an oscillator that still re-
tains some connection to the real world is a combination of a
lossy resonator and an energy restoration element. The latter
precisely compensates for the tank loss to enable a constant-am-
plitude oscillation. To simplify matters, assume that the energy
restorer is noiseless (see Fig. 1). The tank resistance is therefore
the only noisy element in this model.

To gain some useful design insight, first compute the signal
energy stored in the tank

(1)

so that the mean-square signal (carrier) voltage is

(2)

where we have assumed a sinusoidal waveform.
The total mean-square noise voltage is found by integrating

the resistor’s thermal noise density over the noise bandwidth of
theRLC resonator

(3)

Combining (2) and (3), we obtain a noise-to-signal ratio (the
reason for this “upside-down” ratio is one of convention, as will
be seen shortly)

(4

Sensibly enough, one therefore needs to maximize the signal
levels to minimize the noise-to-carrier ratio.
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We may bring power consumption and resonatorexplicitly
into consideration by noting that can be defined generally as
proportional to the energy stored, divided by the energy dissi-
pated:

(5)

Therefore

(6)

The power consumed by this model oscillator is simply equal
to , the amount dissipated by the tank loss. The noise-to-
carrier ratio is here inversely proportional to the product of res-
onator and the power consumed, and directly proportional to
the oscillation frequency. This set of relationships still holds ap-
proximately for real oscillators, and explains the near obsession
of engineers with maximizing resonator, for example.

III. D ETAILED CONSIDERATIONS:PHASE NOISE

To augment the qualitative insights of the foregoing analysis,
let us now determine the actual output spectrum of the ideal
oscillator.

A. Phase Noise of an Ideal Oscillator

Assume that the output in Fig. 1 is the voltage across the tank,
as shown. By postulate, the only source of noise is the white
thermal noise of the tank conductance, which we represent as
a current source across the tank with a mean-square spectral
density of

(7)

This current noise becomes voltage noise when multiplied by
the effective impedance facing the current source. In computing
this impedance, however, it is important to recognize that the
energy restoration element must contribute an average effective
negative resistance that precisely cancels the positive resistance
of the tank. Hence, the net result is that the effective impedance
seen by the noise current source is simply that of a perfectly
losslessLC network.

For relatively small (called the offset frequency) from the
center frequency , the impedance of anLC tank may be ap-
proximated by

(8)

We may write the impedance in a more useful form by incor-
porating an expression for the unloaded tank

(9)

Solving (9) for and substituting into (8) yields

(10)

Thus, we have traded an explicit dependence on inductance
for a dependence on and .

Next, multiply the spectral density of the mean-square noise
current by the squared magnitude of the tank impedance to ob-
tain the spectral density of the mean-square noise voltage

(11)

The power spectral density of the output noise is frequency
dependent because of the filtering action of the tank, falling as
the inverse-square of the offset frequency. This 1behavior
simply reflects the fact that the voltage frequency response of an
RLCtank rolls off as 1 to either side of the center frequency,
and power is proportional to the square of voltage. Note also that
an increase in tank reduces the noise density, when all other
parameters are held constant, underscoring once again the value
of increasing resonator .

In our idealizedLC model, thermal noise affects both ampli-
tude and phase, and (11) includes their combined effect. The
equipartition theorem of thermodynamics tells us that, in equi-
librium, amplitude and phase-noise power are equal. Therefore,
the amplitude limiting mechanism present in any practical os-
cillator removes half the noise given by (11).

It is traditional to normalize the mean-square noise voltage
density to the mean-square carrier voltage and report the ratio in
decibels, thereby explaining the “upside down” ratios presented
previously. Performing this normalization yields the following
equation for the normalized single-sideband noise spectral den-
sity:

(12)

These units are thus proportional to the log of a density.
Specifically, they are commonly expressed as “decibels below
the carrier per hertz,” or dBc/Hz, specified at a particular offset
frequency from the carrier frequency . For example,
one might speak of a 2-GHz oscillator’ phase noise as “−110
dBc/Hz at a 100-kHz offset.” It is important to note that the
“per Hz” actually applies to the argument of the log, not to
the log itself; doubling the measurement bandwidth does not
double the decibel quantity. As lacking in rigor as “dBc/Hz” is,
it is common usage [1].

Equation (12) tells us that phase noise (at a given offset) im-
proves as both the carrier power andincrease, as predicted
earlier. These dependencies make sense. Increasing the signal
power improves the ratio simply because the thermal noise is
fixed, while increasing improves the ratio quadratically be-
cause the tank”s impedance falls off as 1 .

Because many simplifying assumptions have led us to this
point, it should not be surprising that there are some signif-
icant differences between the spectrum predicted by (12) and
what one typically measures in practice. For example, although
real spectra do possess a region where the observed density is
proportional to 1 , the magnitudes are typically quite a
bit larger than predicted by (12), because there are additional
important noise sources besides tank loss. For example, any
physical implementation of an energy restorer will be noisy.
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Fig. 2. Phase noise: Leeson versus (12).

Furthermore, measured spectra eventually flatten out for large
frequency offsets, rather than continuing to drop quadratically.
Such a floor may be due to the noise associated with any ac-
tive elements (such as buffers) placed between the tank and the
outside world, or it can even reflect limitations in the measure-
ment instrumentation itself. Even if the output were taken di-
rectly from the tank, any resistance in series with either the in-
ductor or capacitor would impose a bound on the amount of fil-
tering provided by the tank at large frequency offsets and thus
ultimately produce a noise floor. Last, there is almost always a
1 region at small offsets (we will ignore here the even-
tual flattening of the spectrum at extremely small offsets [4],
[15]).

A modification to (12) provides a means to account for these
discrepancies

(13)

These modifications, due to Leeson, consist of a factorto
account for the increased noise in the 1 region, an addi-
tive factor of unity (inside the braces) to account for the noise
floor, and a multiplicative factor (the term in the second set of
parentheses) to provide a 1 behavior at sufficiently small
offset frequencies [2]. With these modifications, the phase-noise
spectrum appears as in Fig. 2.

It is important to note that the factor is an empirical fitting
parameter and therefore must be determined from measure-
ments, diminishing the predictive power of the phase-noise
equation. Furthermore, the model asserts that , the
boundary between the 1 and 1 regions, is
precisely equal to the 1 corner of device noise. However,
measurements frequently show no such equality, and thus one
must generally treat as an empirical fitting parameter
as well. Also, it is not clear what the corner frequency will be
in the presence of more than one noise source with 1noise
contribution. Last, the frequency at which the noise flattens out
is not always equal to half the resonator bandwidth,2 .

Both the ideal oscillator model and the Leeson model suggest
that increasing resonatorand signal amplitude are ways to re-
duce phase noise. The Leeson model additionally introduces the

factor , but without knowing precisely what it depends on, it is
difficult to identify specific ways to reduce it. The same problem
exists with as well. Last, blind application of these
models has periodically led to earnest but misguided attempts
to use active circuits to boost. Sadly, increases in through
such means are necessarily accompanied by increases inas
well, preventing the anticipated improvements in phase noise.
Again, the lack of analytical expressions forcan obscure this
conclusion, and one continues to encounter various doomed os-
cillator designs based on the notion of activeboosting.

That neither (12) nor (13) can make quantitative predictions
about phase noise is an indication that at least some of the as-
sumptions used in the derivations are invalid, despite their ap-
parent reasonableness. To develop a theory that does not possess
the enumerated deficiencies, we need to revisit, and perhaps re-
vise, these assumptions.

IV. A L INEAR, TIME-VARYING PHASE-NOISETHEORY

The foregoing derivations have all assumed linearity and time
invariance. Let’ us reconsider each of these assumptions in turn.

Nonlinearity is clearly a fundamental property of all real
oscillators, as it is necessary for amplitude limiting. Sev-
eral phase-noise theories have consequently attempted to
explain certain observations as a consequence of nonlinear
behavior. One observation is that a single-frequency sinu-
soidal disturbance injected into an oscillator gives rise to two
equal-amplitude sidebands, symmetrically disposed about
the carrier [7]. Since LTI systems cannot perform frequency
translation and nonlinear systems can, nonlinear mixing has oc-
casionally been proposed to explain phase noise. Unfortunately,
the amplitude of the sidebands must then depend nonlinearly
on the amplitude of the injected signal, and this dependency is
not observed. One must conclude that memoryless nonlinearity
cannot explain the discrepancies, despite initial attractiveness
as the culprit.

As we shall see momentarily, amplitude-control nonlineari-
ties certainly do affect phase noise, but only incidentally, by con-
trolling the detailed shape of the output waveform. An impor-
tant insight is that disturbances are just that:perturbationssu-
perimposed on the main oscillation. They will always be much
smaller in magnitude than the carrier in any oscillator worth de-
signing or analyzing. Thus, if a certain amount of injected noise
produces a certain amount of phase disturbance, we ought to
expect doubling the injected noise to produce double the distur-
bance. Linearity would therefore appear to be a reasonable as-
sumptionas far as the noise-to-phase transfer function is con-
cerned.It is therefore particularly important to keep in mind
that, when assessing linearity, it is essential to identify explic-
itly the input–output variables. Linear relationships may exist
between certain variable pairs at the same time nonlinear ones
exist between others. Linearization of some of these relation-
ships need not imply linearization of the fundamentally non-
linear behavior of the active devices. Indeed, we will perform a
linearization around the steady-state solution, which automati-
cally takes the effect of device nonlinearity into account. There
is therefore no contradiction here with the prior acknowledg-
ment of nonlinear amplitude control.
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We are left only with the assumption of time invariance to re-
examine. In the previous derivations, we have extended time in-
variance to the noise sources themselves, meaning that the mea-
sures that characterize noise (e.g., spectral density) are time in-
variant (stationary). In contrast with linearity, the assumption of
time invariance is less obviously defensible. In fact, it is surpris-
ingly simple to demonstrate that oscillators are fundamentally
time-varying systems. Recognizing this truth is the main key to
developing a more accurate theory of phase noise [3].

To show that time invariance fails to hold, consider explicitly
how an impulse of current affects the waveform of the simplest
resonant system, a losslessLC tank (Fig. 3). Assume that the
system is oscillating with some constant amplitude until the im-
pulse occurs, then consider how the system responds to an im-
pulse injected at two different times, as seen in Fig. 4.

If the impulse happens to coincide with a voltage maximum
(as in the left plot), the amplitude increases abruptly by an
amount , but because the response to the impulse
superposes exactly in phase with the preexisting oscillation,
the timing of the zero crossings does not change.On the other
hand, an impulse injected at some other time generally affects
both the amplitude of oscillation and the timing of the zero
crossings, as in the right plot. Interpreting the zero-crossing
timings as a measure of phase, we see that the amount of phase
disturbance for a given injected impulse depends on when
the injection occurs; time invariance thus fails to hold. An
oscillator is therefore a linear, but (periodically) time-varying
(LTV) system.

Because linearity remains a good assumption, the impulse re-
sponse still completely characterizes the system, even with time
variation thrown in. Noting that an impulsive input produces a
step change in phase, the impulse response may be written as

(14)

where is the unit step function. Dividing by , the max-
imum charge displacement across the capacitor, makes the func-
tion independent of signal amplitude. is called the
impulse sensitivity function (ISF) and is a dimensionless, fre-
quency- and amplitude-independent function periodic in 2. As
its name suggests, it encodes information about the sensitivity
of the oscillator to an impulse injected at phase . In theLC
oscillator example, has its maximum value near the zero
crossings of the oscillation, and a zero value at maxima of the
oscillation waveform. In general, it is most practical (and most
accurate) to determine through simulation, but there are
also analytical methods (some approximate) that apply in spe-
cial cases [4], [8]. In any event, to develop a feel for typical
shapes of ISF’s, consider two representative examples, first for
anLC and a ring oscillator in Fig. 5(a) and (b).

Once the ISF has been determined (by whatever means), we
may compute the excess phase through use of the superposition
integral. This computation is valid here since superposition is
linked to linearity, not time invariance

(15)

Fig. 3. LC oscillator excited by current pulse.

Fig. 4. Impulse responses ofLC tank.

Fig. 5. Example ISF for (a)LCoscillator and (b) ring oscillator.

This computation can be visualized with the help of the equiv-
alent block diagram shown in Fig. 6.

To cast this equation in a more practically useful form, note
that the ISF is periodic and therefore expressible as a Fourier
series

(16)

where the coefficients are real and is the phase of theth
harmonic of the ISF. We will ignore in all that follows be-
cause we will be assuming that noise components are uncorre-
lated, so that their relative phase is irrelevant.

The value of this decomposition is that, like many functions
associated with physical phenomena, the series typically
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Fig. 6. The equivalent block diagram of the process.

Fig. 7. The equivalent system for ISF decomposition.

converges rapidly, so that it is often well approximated by just
the first few terms of the series.

Substituting the Fourier expansion into (15), and exchanging
summation and integration, one obtains

(17)

The corresponding sequence of mathematical operations is
shown graphically in the left half of Fig. 7. Note that the block
diagram contains elements that are analogous to those of a
superheterodyne receiver. The normalized noise current is a
broad-band “RF” signal, whose Fourier components undergo
simultaneous downconversions (multiplications) by “local
oscillator” signals at all harmonics of the oscillation frequency.
It is important to keep in mind that multiplication is a linear
operation if one argument is held constant, as it is here. The
relative contributions of these multiplications are determined
by the Fourier coefficients of the ISF. Equation (17) thus allows
us to compute the excess phase caused by an arbitrary noise
current injected into the system, once the Fourier coefficients
of the ISF have been determined.

Earlier, we noted that signals (noise) injected into a non-
linear system at some frequency may produce spectral compo-
nents at a different frequency. We now show that a linear, but
time-varying system can exhibit qualitatively similar behavior,
as implied by the superheterodyne imagery invoked in the pre-
ceding paragraph. To demonstrate this property explicitly, con-
sider injecting a sinusoidal current whose frequency is near an
integer multiple of the oscillation frequency, so that

(18)

where . Substituting (18) into (17) and noting that
there is a negligible net contribution to the integral by terms

other than when , one obtains the following approxi-
mation:

(19)

The spectrum of therefore consists of two equal side-
bands at , even though the injection occurs near some in-
teger multiple of . We see that we do not need to invoke
nonlinearity to explain this frequency conversion (or “folding”).
This observation is fundamental to understanding the evolution
of noise in an oscillator.

Unfortunately, we are not quite done: (19) allows us to figure
out the spectrum of , but we ultimately want to find the
spectrum of the output voltage of the oscillator, which is not
quite the same thing. The two quantities are linked through the
actual output waveform, however. To illustrate what we mean by
this linkage, consider a specific case where the output may be
approximated as a sinusoid, so that .
This equation may be considered a phase-to-voltage converter; it
takes phase as an input, and produces from it the output voltage.
This conversion is fundamentally nonlinear because it involves
the phase modulation of a sinusoid.

Performing this phase-to-voltage conversion, and assuming
“small” amplitude disturbances, we find that the single-tone in-
jection leading to (19) results in two equal-power sidebands
symmetrically disposed about the carrier

(20)

To distinguish this result from nonlinear mixing phenomena,
note that the amplitude dependence is linear (the squaring oper-
ation simply reflects the fact that we are dealing with a power
quantity here). This relationship can be, and has been, verified
experimentally.

The foregoing result may be extended to the general case of
a white noise source [6]

(21)

Equation (20) implies both upward and downward frequency
translations of noise into the noise near the carrier, as illustrated
in Fig. 8. This figure summarizes what the foregoing equations
tell us: components of noise nearinteger multiplesof the carrier
frequency all fold into noise near the carrier itself.

Noise near dc getsupconverted, weighted by coefficient ,
so 1 device noise ultimately becomes 1 noise near the
carrier; noise near the carrier stays there, weighted by; and
white noise near higher integer multiples of the carrier under-
goesdownconversion, turning into noise in the 1 region.
Note that the 1 shape results from the integration implied
by the step change in phase caused by an impulsive noise input.
Since an integration (even a time-varying one) gives a white
voltage or current spectrum a 1 character, the power spec-
tral density will have a 1 shape.
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Fig. 8. Evolution of circuit noise into phase noise.

It is clear from Fig. 8 that minimizing the various coefficients
(by minimizing the ISF) will minimize the phase noise. To

underscore this point quantitatively, we may use Parseval’s the-
orem to write

(22)

so that the spectrum in the 1 region may be expressed as

(23)

where is the rms value of the ISF. All other factors held
equal, reducing will reduce the phase noise at all frequen-
cies. Equation (23) is the rigorous equation for the 1region
and is one key result of the LTV model. Note that no empirical
curve-fitting parameters are present in (23).

Among other attributes, (23) allows us to study quantitatively
the upconversion of 1 noise into close-in phase noise. Noise
near the carrier is particularly important in communication
systems with narrow channel spacings. In fact, the allowable
channel spacings are frequently constrained by the achievable
phase noise. Unfortunately, it is not possible to predict close-in
phase noise correctly with LTI models.

This problem disappears if the LTV model is used. Specif-
ically, assume that the current noise behaves as follows in the
1 region

(24)

where is the 1 corner frequency. Using (23), we obtain
the following for the noise in the 1 region:

(25)

Fig. 9. Colpitts oscillator (simplified).

Fig. 10. Approximate incremental tank voltage and drain current for Colpitts
oscillator.

which describes the phase noise in the 1region. The 1
corner frequency is then

(26)

from which we see that the 1 phase noise corner is not
necessarily the same as the 1device/circuit noise corner; it
will generally be lower. In fact, since is the dc value of
the ISF, there is a possibility of reducingby large factorsthe
1 phase-noise corner. The ISF is a function of the wave-
form, and hence potentially under the control of the designer,
usually through adjustment of the rise- and fall-time symmetry.
This result is not anticipated by LTI approaches, and is one of
the most powerful insights conferred by this LTV model. This
result has particular significance for technologies with notori-
ously poor 1 noise performance, such as CMOS and GaAs
MESFET’s. A specific circuit example of how one may exploit
this observation follows shortly.

One more extremely powerful insight concerns the influence
of cyclostationarynoise sources. As alluded to earlier, the
noise sources in many oscillators cannot be well modeled as
stationary. A typical example is the nominally white drain
or collector noise current in a MOSFET. Noise currents are
a function of bias currents, and the latter vary periodically
with the oscillating waveform. The LTV model is able to
accommodate a cyclostationary white noise source with ease,
since such a source may be treated as the product of a stationary
white noise source and a periodic function [14]

(27)
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Here, is a stationary white noise source whose peak value
is equal to that of the cyclostationary source, and is a pe-
riodic unitless function with a peak value of unity. Substituting
this into (15) allows us to treat cyclostationary noise as a sta-
tionary noise source provided we define an effective ISF as fol-
lows:

(28)

Thus, none of the foregoing conclusions changes as long as
is used in all of the equations.

Having identified the factors that influence oscillator noise,
we are now in a position to articulate the requirements that must
be satisfied to make a good oscillator. First, in common with the
revelations of LTI models, both the signal power and resonator

should be maximized, all other factors held constant. In ad-
dition, note that an active device is always necessary to com-
pensate for tank loss, and that active devices always contribute
noise. Note also that the ISF’s tell us that there are sensitive
and insensitive moments in an oscillation cycle. Of the infin-
itely many ways that an active element could return energy to
the tank, this energy should be deliveredall at once, where the
ISF has its minimum value. In an idealLC oscillator, therefore,
the transistor would remain off almost all of the time, waking up
periodically to deliver an impulse of current at the signal peak(s)
of each cycle. The extent to which real oscillators approximate
this behavior determines the quality of their phase-noise prop-
erties. Since an LTI theory treats all instants as equally impor-
tant, such theories are unable to anticipate this important result.
Last, the best oscillators will possess the symmetry properties
that lead to small for minimum upconversion of 1 noise.
In the following section, we consider several circuit examples
of how to accomplish these ends in practice.

V. CIRCUIT EXAMPLES

A. LC Oscillators

Let us examine first a Colpitts oscillator and its relevant wave-
forms, now that we have developed these insights (see Figs. 9
and 10). Note that the drain current flows only during a short
interval coincident with the most benign moments (the peaks of
the tank voltage). Its corresponding excellent phase-noise prop-
erties account for the popularity of this configuration. It has long
been known that the best phase noise occurs for a certain narrow
range of tapping ratios (e.g., a 4 : 1 capacitance ratio), but before
the LTV theory, no theoretical basis existed to explain a partic-
ular optimum.

Both LTI and LTV models point out the value of maximizing
signal amplitude. To evade supply-voltage or breakdown
constraints, one may employ a tapped resonator to decouple
resonator swings from device voltage limitations. A common
configuration that does so is Clapp’s modification to the
Colpitts oscillator (Fig. 11). Differential implementations
of oscillators with tapped resonators have recently made an
appearance in the literature [5], [9], [10]. These types of
oscillators become increasingly attractive as supply voltages
scale downward, where conventional resonator connections
lead to -constrained signal swings. Use of tapping allows
signal energy to remain high even with low supply voltages.

Fig. 11. Clapp oscillator.

Fig. 12. Simplified schematic of the VCO in [10].

Phase-noise predictions using the LTV model are frequently
more accurate for bipolar oscillators due to availability of
better device noise models. In [10], impulse response modeling
was used to optimize the noise performance of a differential
bipolar voltage-controlled oscillator (VCO) with an automatic
amplitude control loop using an external resonator. A simpli-
fied schematic of this oscillator is shown in Fig. 12. A tapped
resonator is used to increase the tank signal power. The
optimum capacitive tapping ratio is calculated to be around 4.5
based on simulations that take the cyclostationarity of the noise
into account. The effect of 1 noise reduction is clearly seen,
as a 1 corner of 3 kHz is both predicted and measured, in
comparison with a device 1 noise corner of 200 kHz. The
measured phase noise of−106 dBc/Hz at 100-kHz offset in the
1 region is also in excellent agreement with the predicted
value of−106.2 dBc/Hz. The automatic amplitude control loop
allows for independent optimization of the steady-state and
startup conditions in terms of phase noise.

As mentioned, a key insight of the LTV theory concerns
the importance of symmetry. A configuration that exploits this
knowledge is the symmetrical negative resistance oscillator
shown in Fig. 13 [6]. This configuration is hardly new, but
an appreciation of its symmetry properties is. Here, it is the
half-circuit symmetry that is important, because noise in
the two half-circuits is only partially correlated at best. By
selecting the relative widths of the PMOS and NMOS devices
appropriately to minimize the dc value of the ISF () for
each half-circuit, one may minimize the upconversion of 1
noise. Through exploitation of symmetry in this manner, the
1 corner can be dropped to exceptionally low values,
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even though device 1 noise corners may be high (as is
typically the case for CMOS). Furthermore, the bridge-like
arrangement of the transistor quad allows for greater signal
swings, compounding the improvements in phase noise. As a
result of all of these factors, a phase noise of−121 dBc/Hz at
an offset of 600 kHz at 1.8 GHz has been obtained with low-
on-chip spiral inductors, on 6 mW of power consumption in
a 0.25-µm CMOS technology [6]. This result rivals what one
may achieve with bipolar technologies. With a modest increase
in power, the same oscillator”s phase noise becomes compliant
with specifications for GSM1800.

B. Ring Oscillators

As an example of a circuit that does not well approximate
ideal behavior, consider a ring oscillator. First, the “resonator”
is poor since the energy stored in the node capacitances is reset
(discharged) every cycle. Hence, if the resonator of a Colpitts os-
cillator may be likened to a fine crystal wine glass, the resonator
of a ring oscillator is mud. Next, energy is restored to the res-
onator during the edges (the worst possible times), rather than at
the voltage maxima. These factors account for the well-known
terrible phase-noise performance of ring oscillators. As a con-
sequence, ring oscillators are found only in the most noncritical
applications, or inside wide-band phase-locked loops that clean
up the spectrum.

However, there are certain aspects of ring oscillators that
can be exploited to achieve better phase-noise performance in
a mixed-mode integrated circuit. Noise sources on different
nodes of an oscillator may be strongly correlated due to various
reasons. Two examples of sources with strong correlation are
substrate and supply noise, arising from current switching in
other parts of the chip. The fluctuations on the supply and
substrate will induce a similar perturbation on different stages
of the ring oscillator.

To understand the effect of this correlation, consider the spe-
cial case of having identical noise sources on all the nodes of the
ring oscillator, as shown in Fig. 14. If all the inverters in the os-
cillator are the same, the ISF for different nodes will differ only
in phase by multiples of 2 , as shown in Fig. 15. Therefore,
the total phase due to all the sources is given by (15) through
superposition [13]

(29)

Expanding the term in brackets in a Fourier series, it can be
observed that it is zero except at dc and multiples of , i.e.,

(30)

which means that for fully correlated sources, only noise in the
vicinity of integer multiples of affects the phase. There-
fore, every effort should be made to maximize the correlations of
noise arising from substrate and supply perturbations. This can
be done by making the inverter stages and the noise sources on
each node as similar to each other as possible by proper layout

Fig. 13. Simple symmetrical negative resistance oscillator.

Fig. 14. Five-stage ring oscillator with identical noise sources on all nodes.

Fig. 15. Phasors for noise contributions from each source.

and circuit design. For example, the layout should be kept sym-
metrical, and the inverter stages should be laid out close to each
other so that substrate noise appears as a common-mode source.
This latter consideration is particularly important in the case of
a lightly doped substrate, since such a substrate may not act as
a single node [11]. It is also important that the orientation of
all the stages be kept identical. The interconnecting wires be-
tween the stages must be identical in length and shape, and a
common supply line should feed all the inverter stages. Further-
more, the loading on all stages should be kept identical, perhaps,
for example, by using dummy buffer stages as necessary. Use
of the largest number of stages consistent with oscillation at the
desired frequency will also be helpful because, as a practical
matter, fewer cn coefficients will then affect the phase noise.
Last, as the low-frequency portion of the substrate and supply
noise then dominates, one should exploit symmetry to minimize

.
Another common conundrum concerns the preferred

topology for MOS ring oscillators, i.e., whether a single-ended
or differential topology results in better jitter and phase-noise



334 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 35, NO. 3, MARCH 2000

performance for a given center frequencyand total power
dissipation . Using the noise equations for transistors and an
approximate expression for the ISF, one may derive expres-
sions for the phase noise of MOS differential and single-ended
oscillators [13]. Based on these expressions, the phase noise
of a single-ended (inverter chain) ring oscillator is found to be
independent of the number of stages for a given power dissi-
pation and frequency of operation. However, for a differential
ring oscillator, the phase noise (jitter) grows with the number of
stages. Therefore, even a properly designed differential CMOS
ring oscillator underperforms its single-ended counterpart,
with a disparity that increases with the number of stages. The
difference in the behavior of these two types of oscillators
with respect to the number of stages can be traced to the way
they dissipate power. The dc current drawn from the supply
is independent of the number and slope of the transitions in
differential ring oscillators. In contrast, inverter-chain ring
oscillators dissipate power mainly on a per transition basis and
therefore have better phase noise for a given power dissipation.
However, a differential topology may still be preferred in IC’s
with a large amount of digital circuitry because of the lower
sensitivity to substrate and supply noise, as well as lower noise
injection into other circuits on the same chip. The decision
of which architecture to use should be based on both of these
considerations.

Yet another commonly debated question concerns the op-
timum number of inverter stages in a ring oscillator to achieve
the best jitter and phase noise for a givenand . For single-
ended CMOS ring oscillators, the phase noise and jitter in the
1 region are not strong functions of the number of stages
[13]. However, if the symmetry criteria are not well satisfied,
and/or the process has large 1noise, a larger will reduce
the jitter. In general, the choice of the number of stages must be
made on the basis of several design criteria, such as 1noise
effect, the desired maximum frequency of oscillation, and the
influence of external noise sources, such as supply and substrate
noise, that may not scale with .

The jitter and phase-noise behavior is different for differen-
tial ring oscillators. Jitter and phase noise increase with an in-
creasing number of stages. Hence, if the 1noise corner is not
large, and/or proper symmetry measures have been taken, the
minimum number of stages (three or four) should be used to
give the best performance. This recommendation holds even if
the power dissipation is not a primary issue. It is not fair to argue
that burning more power in a larger number of stages allows the
achievement of better phase noise, since dissipating the same
total power in a smaller number of stages with larger devices
results in better jitter and phase noise, as long as it is possible to
maximize the total charge swing.

VI. SUMMARY

The insights gained from LTI phase noise models are simple
and intuitively satisfying: One should maximize signal ampli-
tude and resonator . An additional, implicit insight is that the
phase shifts around the loop generally must be arranged so that
oscillation occurs at or very near the center frequency of the

resonator. This way, there is a maximum attenuation by the res-
onator of off-center spectral components.

Deeper insights provided by the LTV model are that the res-
onator energy should be restored impulsively at the ISF min-
imum, instead of evenly throughout a cycle, and that the dc
value of the effective ISF should be made as close to zero as
possible to suppress the upconversion of 1noise into close-in
phase noise. The theory also shows that the inferior broad-band
noise performance of ring oscillators may be offset by their po-
tentially superior ability to reject common-mode substrate and
supply noise.

APPENDIX A
NOTES ONSIMULATION

Exact analytical derivations of the ISF are usually not obtain-
able for any but the simplest oscillators. Various approximate
methods are outlined in [3] and [4], but the most generally ac-
curate method is direct evaluation of the time-varying impulse
response. In this direct method, an impulsive excitation perturbs
the oscillator, and the steady-state phase perturbation measured.
The timing of the impulse with respect to the unperturbed os-
cillator’s zero crossing is then incremented and the simulation
repeated until the impulse has been “walked” through an entire
cycle.

The impulse must have a small enough value to ensure that
the assumption of linearity holds. Just as an amplifier”s step
response cannot be evaluated properly with steps of arbitrary
size, one must judiciously select the area of the impulse rather
than blindly employing some fixed value (e.g., one coulomb). If
one is unsure if the impulse chosen is sized properly, linearity
may always be tested explicitly by scaling the size of impulse
by some amount and verifying that the response scales by the
same factor.

Last, some confusion persists about whether the LTV theory
properly accommodates the phenomenon of amplitude-to-phase
conversion that some oscillators exhibit. As long as linearity
holds, the LTV theory provides the correct answer, provided
that an exact ISF has been obtained. This is due to the fact that
changes in the phase of oscillator due to an amplitude change
appear in the impulse response of the oscillator. As noted in
the preceding paragraphs, the direct impulse response method
is the most reliable one, as it makes no assumptions other than
linearity. This reliability is in contrast with the approximate an-
alytical approaches offered in [3, Appendix].

APPENDIX B
AMPLITUDE RESPONSE

While the close-in sidebands are dominated by phase noise,
the far-out sidebands are greatly affected by amplitude noise.
Unlike the induced excess phase, the excess amplitude, due
to a current impulse, decays with time. This decay is the direct
result of the amplitude restoring mechanisms always present
in practical oscillators. The excess amplitude may decay very
slowly (e.g., in a harmonic oscillator with a high-quality reso-
nant circuit) or very quickly (e.g., a ring oscillator). Some cir-
cuits may even demonstrate an underdamped second order am-
plitude response.
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Fig. 16. Overdamped and underdamped amplitude responses.

Fig. 17. Phase, amplitude, and total output sideband power for the overdamped
exponentially decaying amplitude response.

In the context of the idealLC oscillator of Fig. 1, a current
impulse with an area will induce an instantaneous change in
the capacitor voltage, which, in turn, will result in a change in
the oscillator amplitude that depends on the instant of injection,
as shown in Fig. 4. The amplitude change is proportional to the
instantaneous normalized voltage change1 for small
injected charge, i.e.,

(31)

where is a periodic function that determines the sensi-
tivity of each point on the waveform to an impulse and is called
the amplitude impulse sensitivity function. It is the amplitude
counterpart of the phase impulse sensitivity function .
From a development similar to that of Section IV, the ampli-
tude impulse response can be written as

(32)

where is a function that defines how the excess ampli-
tude decays. Fig. 16 shows two hypothetical examples of
for a low oscillator with overdamped response and a high
oscillator with underdamped amplitude response. For most os-
cillators, the amplitude limiting system can be approximated as

1Note that the amplitude change is only equal to the normalized voltage
change�V=V if the impulse is injected at the peak of the sinusoidal tank
voltage.

first or second order [12]. The function typically will
thus be either a dying exponential or a damped sinusoid.

For a first-order system

(33)

Therefore the excess amplitude response to an arbitrary input
current is given by the superposition integral

(34)

If is a white noise source with power spectral density
, the output power spectrum of the amplitude noise

can be shown to be

(35)

where is the rms value of . If is measured,
the sum of both and will be observed, and
hence there will be a pedestal in the phase-noise spectrum at

, as shown in Fig. 17. Also note that the significance of
the amplitude response depends greatly on , which, in turn,
depends on the topology.
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